множество

  • 111Перечислимое множество — Не следует путать с счётным множеством. В теории множеств, теории алгоритмов и математической логике, перечислимое множество (эффективно перечислимое, рекурсивно перечислимое, полуразрешимое множество[1])  множество конструктивных объектов… …

    Википедия

  • 112Нечёткое множество — Эту страницу предлагается объединить с Теория нечётких множеств …

    Википедия

  • 113Нечеткое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …

    Википедия

  • 114Ограниченное множество — В математическом анализе, и прилегающих разделах математики, ограниченное множество  множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай… …

    Википедия

  • 115Пушистое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …

    Википедия

  • 116Ограниченное числовое множество — В математическом анализе, и прилегающих разделах математики, ограниченное множество  множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай… …

    Википедия

  • 117Разрешимое множество — В теории множеств, теории алгоритмов и математической логике, множество натуральных чисел называется разрешимым или рекурсивным, если существует алгоритм, который, получив на вход любое натуральное число, через конечное число шагов завершается и… …

    Википедия

  • 118Арифметическое множество — В теории множеств и математической логике, множество натуральных чисел называется арифметическим, если оно может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной что… …

    Википедия

  • 119Мягкое множество — Мягкое множество  параметризированное классом принадлежности семейство элементов универсума в теории нечётких множеств. Определение Под мягким множеством понимается множество пар: , где   универсальное множество, а …

    Википедия

  • 120Счётное множество — Не следует путать с перечислимым множеством. В теории множеств, счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество является счётным, если существует биекция ,… …

    Википедия